A lateral flow immunoassay "Sss AgriStrip" as a tool for specific and rapid detection of Spongospora subterranea on potato tubers

Bouchek-Mechiche K1, 2 Montfort F1 & Merz U3

(1) UMR 1099 BiO3P INRA/ BP 35327, 35653 Le Rheu Cedex, (2) GNIS, 44 rue du Louvre, 75001 Paris, France, 3) Plant Pathology/IBZ, ETH Zurich Universitatsstr.

Spongospora subterranea, the causative agent of powdery scab is mainly spread through infected seed and can survive in contaminated soil for many years. Visual inspection of seed tubers risks misidentification between common scab (due to Streptomyces spp.) and powdery scab symptoms (due to S. subterranea). To avoid these problem, a rapid test tool "Sss AgriStrip", using monoclonal antibodies which are specific to resting spores of Sss has been developed (BIOREBA, Switzerland). The objective of this study was to assess it's accuracy and sensitivity in the routine diagnostics of Sss using tubers showing different types of symptoms (typical and atypical=suspicious lesions) and compared with other validated test methods

Comparison of the detection ability of the Sss AgriStrip with microscopy, DAS-ELISA PCR and real-time PCR

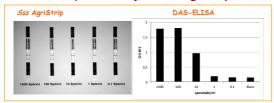
Methods

General Methodology

based on lateral flow immunochromatography using monoclonal antibodies specific to resting spores of Sss

Bands start developing after 1-2 min and reach maximum intensity after 10-15 min.

- DAS-ELISA: performed using a monoclonal antibody developed against the sporosori of Sss (Merz et al. 2005)
- PCR : performed using Sss specific primers Sps1 and Sps2 (Bell et al. (1999)
- Real-time PCR (TaqMan Tm) : performed using the primers and probes designed on the ITS1 and ITS2 regions (Bouchek-Mechiche et al., 2004)
- · Microscopy: powder scrapped from lesions were observed under light microscope at 10 and 40X magnification


Study of the sensitivity of the Sss AgriStrip (1)

The sensivity of the Sss AgriStrip was compared to that of DAS-ELISA with a dilution series of Sss sporosori in buffer

Performance comparison between Sss AgriStrip and other validated method (2)

Nineteen tuber lots with different types of scab symptoms were analysed by different methods

Results: 1) Sensitivity of Sss AgriStrip

The Sss AgriStrip is as sensitive as the DAS-ELISA with a detection limit between

Results: 2) Comparison of the detection ability of the Sss AgriStrip with other validated lab methods

		Lots	Symptoms	Sss AgriStrip	Microscopy	ELISA	PCR	qPCR	pg DNA/μl¹
Lot 1 Lot 2		1	TPL	+	+	+	+	+	6300
	17 May 1	2	TPL	+	+	+	+	+	700
	1991	3	TPL	+	+	+	+	+	2600
	Lot 2	4	TPL	+	+	+	+	+	1410
Lot 5a Lot 5i		5a	TPL	+	+	+	+	+	1120
	1	5b	ATL	+	+	+	+	+	242
	Carrie W	6a	TPL	+	+	+	+	+	150
	Section 1	6b	ATL	+	+	+	+	+	52
		7a	TPL	+	+	+	+	+	176
	Lot 5b	7b	ATL	+	+	+	+	+	58
		8	ATL		-	-	-	-	0
	100	9	ATL	7	-	-	-	-	0
		10	ATL		(+)	-	-	-	0
	Lot 12	11	ATL	7	-	-	-	-	0
	1000	12	ATL		-	-	-	-	0
	1	13	ATL	7	-	-	-	-	0
	42/22	14	ATL		-	-	-	-	0
	1000	15 16	ATL ATL	1	-	-	-	-	0
	Lot 17				-	-	-	-	0
		17	ATL		(+)	-	-	-	0
Let 18	Lot 19	18 19	TCL TCL	:			-		0

Results of the Sss AgriStrip were highly consistent with DAS-ELISA, PCR, real-time PCR, and microscopy. Sss was detected in all tubers with typical symptoms but only in a few lots with tubers showing atypical (suspicious) lesions. The appearance of these atypical lesions positive for the presence of Sss was similar: a diffuse brown necrotic tissue under the periderm and the absence of the dark brown Sss sporehalls (photo lot 5b). Sss was not detected in most of the atypical lesions with the Sss AgriStrip as well as with the other methods. The tubers with the atypical lesions free of Sss were analyzed for the presence of Streptomyces.

Search for the presence of *Streptomyces* spp. in samples detected free of *S. subterranea*

Methods

Streptomyces isolation

Streptomyces spp. were isolated from atypical lesions on tubers as described by Bouchek-Mechiche et al. (1998)

PCR analysis of genes encoding thaxtomin synthetase

Performed using the primers TxtAB1 and TxtAB2 specific to the txtAB genes encoding the pathogenicity determinant thaxtomin in Streptomyces spp.

Pathogenicity testing

Pathogenicity of isolated Streptomyces spp. wa assessed on potato and on radish in the growth chamber at 22°C. radish scoring data on a scale of 0 to 5. Potato scab index on a scale 0 to 100%. Isolates were considered pathogenic on radish: scab index above treshold of pathogenicity of 1.0 and on potato :scab index > 5%.

Results: Evaluation of pathogenicity, the presence of the txtAB operon, for isolated Streptomyces

Lot	Isolate	pathogenicity	Streptomyces	Streptomyces
			16 S rDNAs	txtAB genes
8	8a	+	+	+
9	9a	+	+	+
	9b	+	+	+
10	10a	+	+	+
	10b	+	+	+
	10c	+	+	+
	10d	+	+	+
11	11a	+	+	+
	11b		+	
	11c	+	+	+
12	12a	+	+	+
13	12b	+	+	+
	12c	+	+	+
	12d	+	+	+
14	14a	+	+	+
15	14a 14b	+		+
13	14c	+		+
	15a	+	+	+
	15b	+	+	+
16	16a	•	+	
17	17a	•	+	-
	17b	-	+	
	CEDD 4504			

Symptoms induced in pot test with isolated *Streptomyces* spp. On potato cv. Bintje and radish cv. Polka

 ${\it Streptomyces} \ spp. \ could \ be \ identified \ as \ the \ cause \ of \ most \ of \ the \ atypical \ lesions \ negative \ to \ the \ presence \ of \ {\it Sss} \ through \ isolation \ and \ subsequent \ pathogenicity \ tests \ and \ amplification \ of \ the \ txtAB \ genes.$

CONCLUSION

This data demonstrates the simplicity, robustness and sensitivity of the Sss AgriStrip, which makes it ideally suited for rapid detection of Sss on farms and at border-inspection points. This test will substantially increases the accuracy of inspection procedures and field scoring based on visual assessment